Corticosterone enhances the potency of ethanol against hippocampal long-term potentiation via local neurosteroid synthesis

نویسندگان

  • Yukitoshi Izumi
  • Kazuko A. O’Dell
  • Charles F. Zorumski
چکیده

Corticosterone is known to accumulate in brain after various stressors including alcohol intoxication. Just as severe alcohol intoxication is typically required to impair memory formation only high concentrations of ethanol (60 mM) acutely inhibit long-term potentiation (LTP), a cellular memory mechanism, in naïve hippocampal slices. This LTP inhibition involves synthesis of neurosteroids, including allopregnanolone, and appears to involve a form of cellular stress. In the CA1 region of rat hippocampal slices, we examined whether a lower concentration of ethanol (20 mM) inhibits LTP in the presence of corticosterone, a stress-related modulator, and whether corticosterone stimulates local neurosteroid synthesis. Although low micromolar corticosterone alone did not inhibit LTP induction, we found that 20 mM ethanol inhibited LTP in the presence of corticosterone. At 20 mM, ethanol alone did not stimulate neurosteroid synthesis or inhibit LTP. LTP inhibition by corticosterone plus ethanol was blocked by finasteride, an inhibitor of 5α-reductase, suggesting a role for neurosteroid synthesis. We also found that corticosterone alone enhanced neurosteroid immunostaining in CA1 pyramidal neurons and that this immunostaining was further augmented by 20 mM ethanol. The enhanced neurosteroid staining was blocked by finasteride and the N-methyl-D-aspartate antagonist, 2-amino-5-phosphonovalerate (APV). These results indicate that corticosterone promotes neurosteroid synthesis in hippocampal pyramidal neurons and can participate in ethanol-mediated synaptic dysfunction even at moderate ethanol levels. These effects may contribute to the influence of stress on alcohol-induced cognitive impairment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ethanol enhances neurosteroidogenesis in hippocampal pyramidal neurons by paradoxical NMDA receptor activation.

Using an antibody against 5α-reduced neurosteroids, predominantly allopregnanolone, we found that immunostaining in the CA1 region of rat hippocampal slices was confined to pyramidal neurons. This neurosteroid staining was increased following 15 min administration of 60 mm but not 20 mm ethanol, and the enhancement was blocked by finasteride and dutasteride, selective inhibitors of 5α-reductase...

متن کامل

Block of 5-HT2 Receptors Enhances Hippocampal Long-Term Potentiation

The effect of endogenous serotonin on long-term potentiation (LTP) in region CAI was studied by blocking 5-HT2 receptors with ketanserin in rat hippocampal slices. Such a block significantly en-hanced long-term potentiation of the CAI population spike induced by high frequency stimulation of the schaffer collateral/ commissural pathway. This implies that serotonin acts on 5-HT2 receptors in CAI...

متن کامل

The Protective Effects of Crocin on Input-Output Functions and Long-term Potentiation of Hippocampal CA1 Area in Rats Exposed to Chronic Social Isolated Stress

Introduction: The lack of social communication is associated with the primary risk of proper brain functions. It is reported that crocin helps relieve this problem. The present study examined the protective effect of two doses of crocin on Long-term potentiation (LTP) of hippocampal cornu ammonis 1 (CA1) area as a cellular mechanism in rats exposed to chronic social isolated stress. Methods: R...

متن کامل

P3: Mechanisms of TrkB-Mediated Hippocampal Long-Term Potentiation in Learning and Memory

Long-term potentiation (LTP) is a process that certain types of synaptic stimulation lead to a long-lasting enhancement in the strength of synaptic transmission. Studies in recent years indicate the importance of molecular pathways in the development of memory and learning. Tropomyosin receptor kinase B (TrkB) is a member of the neurotrophin receptor tyrosine kinase family, that its ligand is b...

متن کامل

Protein synthesis is required for synaptic immunity to depotentiation.

De novo protein synthesis and transcription are necessary for the expression of long-lasting synaptic potentiation [long-term potentiation (LTP)] in hippocampal area CA1 and for the consolidation of long-term memory. The stability of LTP and its longevity require macromolecular synthesis at later stages, but a specific role for early protein synthesis has not been identified. Using electrophysi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2015